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Crypto currencies and Green Investment Impact on Global Environment: 1 

A Time Series Analysis 2 

Abstract  3 

Climate change has become a central theme in both national and international forums in 4 

recent decades. In this regard, the argument has quickly moved and centered on the role of 5 

crypto currencies, in addition to the fundamental culprits of ecological destruction, such as 6 

fossil fuels, agricultural, and industrial pollution. The aim of the present study is to assess the 7 

role of asymmetries in determining the relationship between blockchain and green investment 8 

with the environment using the Non-linear Autoregressive Distributive Lag (NARDL) 9 

technique. The data from the United States of America (USA) is used over the period from 10 

2011 to 2020. The findings reveal that, contrary to common belief, there is asymmetric 11 

relation between crypto currencies and biofuel usage in both the short and long run. 12 

Similarly, asymmetry also exists between renewable energy use and consumption of biofuel. 13 

Further, there is a strong coherence among the concerned variables is also proved in this 14 

study. Therefore, the study implies that assuming symmetric and weak coherence 15 

relationships between blockchain technology and green investment in the global environment 16 

produce biased and misleading findings which are not a true representation of the real-world 17 

scenario. Based on this the study suggests that policymakers and environmentalists may 18 

strive to achieve low carbon emissions using environment-friendly technology and less 19 

energy use. Lastly, the negative nonlinear impacts of blockchain technology and green 20 

investment must be considered in the carbon emissions released in the USA economy.  21 

Keywords: crypto currencies, USA, NARDL, Green Investment 22 

1. Introduction  23 

In the last decade, the public interest in crypto currencies has developed considerably since 24 

the emergence of this new mode of finance and investment. Bitcoin, the most prominent 25 

crypto currencies, began as an electronic cash transfer from one place to another without the 26 

participation of banking institutions. Crypto currencies were advocated as a medium to fulfill 27 

the purpose of inventorying transactions (Nakamoto, 2008). These new electronic currencies 28 

are considered to be reliable since their owners can only spend them once. They are marketed 29 
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as a peer-to-peer version of electronic money transfers that use a database of nodes that 30 

operate together with minimum coordination(Davidson et al., 2016). 31 

Despite of tremendous positive features of this new form of finance, concerns related to its 32 

environmental impact have arisen in the recent past. Environmentalists especially climate 33 

change experts have raised serious concerns related to mining and extensive technology 34 

usage in these currency trading. Nowadays, as crypto currencies' prominence has increased 35 

greatly, especially in developed countries, the concerns attached to the sustainability of the 36 

environment have become a hot topic of discussion. The argument for a sustainable 37 

environment advocates that crypto currencies relies on the utilization of a huge amount of 38 

electricity consumption for its extraction process thus causing an environmental hazard 39 

(Bendiksen et al., 2019; Köhler & Pizzol, 2019; Koomey, 2019; Li et al., 2019). The process 40 

of crypto currencies is such that holders compete with each other over the addition of the next 41 

block (extracted through the process called mining) of the currency to the chain thus creating 42 

environmental degradation. 43 

Moreover, the competition for the next block also uses considerable processing power in an 44 

attempt to solve the complex puzzle of mining(Moll & Yigitbasioglu, 2019).As per Kokina et 45 

al. (2017), hashing is a complicated mathematical logic that is used to link the blocks 46 

together, these blocks are unchangeable due to a digital signature and a timestamp. An 47 

estimate is given by a website named: Blockchain.com. in 2018, the set mining value for a 48 

one-block addition roughly used 15-60 million Tera hashes per second which is extremely 49 

high and environmentally deteriorating. According to McGeeham (2021), a typical server that 50 

is involved in the mining of individual coins costs somewhat between $3224 to $9000.  51 

Furthermore, according to Andoni et al. (2019), Gallersdörfer et al. (2020), and Reiff (2020), 52 

the quantity of energy consumed by crypto currencies, particularly of Bitcoin in ASIC 53 

algorithms is questionably large than the energy consumed in the market capitalization. These 54 

currencies have pluralistic promising technological advancement(Gallagher et al., 2019). 55 

Consequently, blockchain, in particular, is used in a number of industries, for example, 56 

supply chain management according to Wang et al. (2020), and cooperate operation and 57 

taxation as per Kimani et al. (2020). Also in the business and infrastructure sectors 58 

respectively(Bai et al., 2020; Shojaei et al., 2019). Similarly, in academia specifically in the 59 

management sector block chain technologies are widely used (Centobelli et al., 60 

2021).According to Singh et al. (2019), the fourth industrial revolution demands the use of 61 
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such innovative block chains. Given the importance of blockchain technologies, a rough 62 

estimate predicts that crypto currencies specifically Bitcoinemit more than 100 million tons 63 

of CO2 emissions every year. Similarly, an empirical analysis conducted by Köhler and 64 

Pizzol (2019)estimated that the mining of Bitcoin alone produces 17.29 metric tons of CO2. 65 

At present, there are both positive as well as negative views regarding crypto currencies 66 

potential environmental impact. A study such as Krause and Tolaymat (2018)argued that the 67 

Bitcoin mining rate and consumption of energy contribute to an increase in CO2in the 68 

atmosphere. To be more specific, according to Mora et al. (2018) and Howson (2019), 69 

Bitcoin alone among all crypto currencies may lead toa 2-degree Celsius rise in global 70 

temperature by 2050.On the other hand, Köhler and Pizzol (2019)concluded that increasing 71 

the hash rate of Bitcoin decreases both energy consumption as well as carbon footprint. 72 

Similarly, another study on carbon footprint by Yang and Hamori (2021)analyzed the carbon 73 

footprint network and found that the 95thpercentile fell at 8.04 and 10.37 billion Euros and the 74 

99th percentile sat 11.33 and 14.15 billion euro shortfall for atmospheric risk. Naeem and 75 

Karim (2021) further added that clean energy hedging ratio and effectiveness are greater for 76 

bitcoin, demonstrating its substantial diversification potential. According to Pham et al. 77 

(2022), green crypto currencies are not strongly connected to bitcoin and Ethereal indicating 78 

a need of more green financial assets including green crypto currencies. However, a strong 79 

policy assessment is necessary is this respect as green assets in USA are highly affected by 80 

the stock market volatilities (Naeem et al., 2022). 81 

Considering these contracting views there is a need to explore in detail crypto currencies 82 

impact on the environment. Global warming is one of the human-generated environmental 83 

changes to the planet caused by the trapping of CO2 emissions and other similar gases in the 84 

atmosphere. These trapped gases accumulate heat in the earth’s system thereby raising its 85 

temperature (Hao et al., 2008). Global warming affects all aspects of human life. In 86 

particular, it causes flooding due to the melting of glaciers, changes in rain and weather 87 

patterns, urbanization, agricultural productivity losses, and serious threat to human health. In 88 

addition, it also poses constraints to economic growth and development, therefore, hindering 89 

the quality of life. So, considering the significance of the environment and the potential 90 

impact of crypto currencies on environmental quality motivate us to conduct this study. The 91 

existing literature on crypto currencies mostly highlights its positive attributes and features 92 
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consequently ignoring mining and transacting aspects of crypto currencies on the 93 

environment. 94 

Thus, motivated by this, we have assumed and explored asymmetries in crypto currencies and 95 

environment nexus. The findings of our study may be useful to environmentalists who have 96 

specific concerns related to climate change owing to rapidly growing blockchain 97 

technologies. Our study not only examines the impact of crypto currencies on the 98 

environment but also explores the optimal energy sources that are used in it extensively.  99 

This study is one of its kinds since it adds to the present literature in several ways: To begin, 100 

this paper analyzes the impact of crypto currencies volume, prices, bitcoin energy use, 101 

biofuels use, renewable energy use, and coal consumption in the United States of America on 102 

CO2 emissions. The selection of the USA is based on the reason the country is a developed 103 

economy and bitcoin is largely used in the country. As presently about 19.24 million bitcoin 104 

are in circulation in the USA with a total volume of 14312.274944 trillion. Along with this, 105 

the country has high carbon emissions. Therefore, it is important to explore whether bitcoin 106 

also plays any role in the carbon emissions of the country. If yes then what is the level of this 107 

effect?  Second, this research uses the NARDL and NARDL bound tests, as well as CUSUM 108 

plots, to capture the long- and short-term relationships between variables. Thirdly, the study 109 

explores the effect of both bitcoin price and volume on carbon emission to highlight whether 110 

the pricing effect is greater or whether volume has a larger impact. Lastly, the findings of this 111 

study will help policymakers and environmentalists in defining concrete regulations for 112 

blockchain and crypto currencies functioning as it provides comparative findings on crypto 113 

energy algorithms and other energy-efficient alternatives so that efficient use of energy and 114 

environment conservation in blockchain technologies can be achieved throughout their 115 

lifecycle.  116 

1.1. Research Question  117 

This study intends to analyze blockchain versus green investment’s impact on the 118 

environment by taking into consideration crypto currencies and investment in bitcoin's 119 

impacts on CO2 emissions emitted in the US economy. The study attempts to explore the 120 

answer to the following questions:  121 

1. What are the impact of crypto currencies, bitcoin energy use, and biofuel consumption 122 

on CO2 emissions in the USA?  123 
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2. How one can evaluate the impact of crypto currencies on the environment and the 124 

optimal energy source in order to invest in crypto currencies for the reduction of its 125 

carbon footprints? 126 

3. How do long-run and short-run relationships appear between crypto currencies and 127 

CO2 emissions? 128 

The remaining paper is arranged as: section 2 illustrates a brief literature review of the 129 

existing studies. Next is section 3 which provides information regarding the data sources and 130 

the econometric methodology employed in this study? Followed by it, section 4 presents the 131 

results and a detailed discussion of the findings. Lastly, there is section 5, which presents the 132 

conclusion of the study and provides policy suggestions in light of the obtained results.  133 

2. Literature Review 134 

Like the emergence of any other new technology, crypto currencies particularly bitcoin’s 135 

impact on the environment ought to be investigated. The emerging literature explored the 136 

environment along with the impact on energy in the recent past. Roughly around 3 to 15 137 

million tons of CO2 emissions are generated through crypto currencies mining (Krause & 138 

Tolaymat, 2018).In addition, it is not simply crypto currencies-generated CO2 emissions that 139 

have an impact on the environment. The attainment as well as the use of crypto currencies 140 

makes use of a variety of resources, the most important of which is the use of electricity. As a 141 

result, the consumption of energy and the generation of carbon dioxide are two major 142 

concerns about the environmental impact of crypto currencies. 143 

The literature on the crypto currencies environment nexus evolved in late 2010 and early 144 

2020. Several studies such as Jiang et al. (2021), Roeck and Drennen (2022), Badea and 145 

Mungiu-Pupӑzan (2021)explored the electricity consumption of Bitcoin mining. However, 146 

other studies like Mora et al. (2018), Panah et al. (2022), Pham et al. (2022), and Erdogan 147 

(2022) investigated CO2 emissions generated from the mining process of crypto currencies. 148 

Similarly, Scholtens (2009), Li and Jia, (2017), Ahmad et al. (2018), Ling et al. (2022), 149 

(Legotin et al., 2018); Thampanya et al. (2021), and Majeed et al. (2020)have explored the 150 

connection between social responsibility related to environment conservation and financial 151 

institution performance and finance respectively. Another strand such as Abu Bakar and 152 

Rosbi (2017), Lee et al. (2016), and Jadevicius and Huston (2015)predict the future impact of 153 

crypto currencies on environmental quality.  154 
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A study by Mora et al. (2018)is one of the pioneer studies that raise environmental concerns 155 

about bitcoin. The authors pointed out that approximately 0.033 percent of 314.2 billion 156 

cashless transactions done globally in 2017 were of bitcoin, which is significantly high. 157 

Therefore, there lies a need to explore the environmental impact of these transactions. The 158 

study predicted that like any other popular technology adaption by the masses, if bitcoin is 159 

adopted in a similar manner, then there would-be global warming of more than 2 degrees 160 

Celsius in the coming decades. Further, the study suggests that if bitcoin validation widens 161 

then its carbon footprint will increase many folds along with electricity consumption thereby 162 

deteriorating environmental quality greatly.  163 

Focusing on the Bitcoin mining-generated carbon footprint, Köhler and Pizzol (2019), Shi et 164 

al. (2021), and Stoll et al. (2019)advocated similar findings. The study has employed the Life 165 

Cycle Assessment methodology in an attempt to explore the past, present, and future climatic 166 

effects of the bitcoin mining industry. The authors demonstrated that the geographical 167 

distribution of miners and their equipment had an impact on the ecosystem. Further, it is 168 

reported that in the year 2018, bitcoin generation consume 31.29 TWH of electricity and 169 

correspondingly generate 17.29 metric tons of CO2 globally.  170 

Another study in this realm has propagated exactly a similar environmental impact. Jiang and 171 

Liang (2017)investigated how China's bitcoin block chain process generates carbon 172 

emissions. For analysis, they used simulation-based modeling. The authors discovered that 173 

the country’s bitcoin usage emits around 130.05 million metric tons of CO2 into the 174 

environment. Therefore, to control such a huge carbon footprint modification in the structure 175 

of energy consumption is needed. Using VAR and shortfall estimates for environmental risk, 176 

Yang and Hamori (2021)also analyzed the Bitcoin price impact on carbon emissions. The 177 

study found that the higher the percentile the greater the risk for climate degradation. 178 

Another study on bitcoin by de Vries et al. (2022)incorporated its price element in the effect 179 

of the mining process on the environment. The study used the simple economic model and 180 

concluded that if the record-breaking price of bitcoin in early 2021 remains intact then its 181 

global data centers would use similar energy consumption and resultantly would generate the 182 

same carbon footprint as generated in London. Further, the rising popularity of bitcoin 183 

increases its demand due to which demand for electric chips globally increases thereby 184 

affecting the production of other electric appliances. Other than electric appliances demand, 185 

energy usage also increase sowing to wide bitcoin use. Badea and Mungiu-Pupӑzan 186 
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(2021)pointed out that miners are primarily concerned about the profit obtained from crypto 187 

currencies trading rather than the efficient use of energy. This objective of miners enables a 188 

large number of other traders to enter the industry thereby exhausting energy at an alarming 189 

rate. 190 

There are several studies conducted so far that report figures regarding the efficiency of 191 

mining, energy consumption, or health hazards caused by the mining process of crypto 192 

currencies. For instance, it has been reported that in 2010-13 when crypto currencies was 193 

relatively new, the average efficiency of mining across various mining networks was 0.40 194 

Wat per GH/s (Hayes, 2017). Another paper written by Mohsin et al. (2020)on the energy use 195 

in the mining of crypto currencies reported that the consumption of crypto currencies 196 

particularly bitcoin in 2020 was around 63 TWh per year. Regarding health effects, Goodkind 197 

et al. (2020), reported that against each $1 bitcoin valued at $0.49 health and environmental 198 

damage is caused in the USA. Similarly, this figure is $0.37 for China. Therefore, it is 199 

substantially evident that the creation of crypto currencies is environmentally damaging.  200 

Most recently, Erdogan et al. (2022)investigated the nexus using Toda-Yamamoto test. The 201 

study findings are in the favor of negative impact of crypto currencies on the environment. It 202 

advocated that as the demand for bitcoin increases, it increasingly deteriorates environmental 203 

quality by rising CO2.Similarly, Badea and Mungiu-Pupӑzan (2021)reported related findings. 204 

The authors incorporated the involvement of energy consumption in the analysis of bitcoin’s 205 

effect on the environment and provide evidence of the established negative impact. The 206 

authors argued that though environmental consequences are there, the economic role of 207 

bitcoin cannot be ignored given its acceptance owing to the credibility gains of the currency. 208 

Regarding the policy perspective, a handful number of other studies are also conducted in this 209 

strand of research. For example, a study by Panah et al. (2022)suggested that there is a need 210 

to induce integrated regulatory environmental policy within markets on a global scale. The 211 

study advocated investing in green hydrogen production and linking it with crypto currencies 212 

mining. The authors are of the view that crypto currencies miners can be taxed by requiring 213 

them to provide support for electrolyzes. Doing so would help control the emissions as well 214 

as the price of the crypto coin. The study further suggests that the mining of crypto currencies 215 

can be used to generate green hydrogen.  216 
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Employing Life Cycle Assessment (LCA) method, Roeck and Drennen (2022)conducted 217 

most recently gave practical suggestions to the policymakers. Apart from the emissions, the 218 

authors have also explored the formation of smog and acidification as a result of bitcoin 219 

mining in New York State the USA. The authors pointed out that the mining of bitcoin not 220 

only disturbs local environmental measures, but it also led to failing sustainable goals and 221 

national programs to combat environmental deterioration.  222 

The most closely related to our analysis are Schinckus (2020) and Sarkodie et al. (2022). The 223 

study investigated the impact of crypto currencies trading volume on both short-run and long-224 

run effects of energy consumption on the environment. The findings reveal that there is a 225 

positive effect of crypto trading on the environment irrespective of the short or long run. 226 

This paper fills a gap in the literature by investigating the impacts of crypto currencies 227 

volume, pricing, bitcoin energy usage, biofuel use, renewable energy use, and coal use 228 

altogether in the United States of America on CO2 emissions. Second, the NARDL bound 229 

testing approach, as well as CUSUM plots, are used in this study to find long- and short-term 230 

connections between variables. In the presence of non-linearities in the model, this approach 231 

provides the appropriate outcome. Thirdly, this study exploited the maximum available data 232 

for the analysis. Fourthly, a wide range of related control variables' effects on carbon 233 

emissions in the short run and long run are also studied in this paper. The selected 234 

investigation is a need of the hour due to the wide acceptance and usage of crypto currencies 235 

all over the world. Finally, the findings of this study will assist policymakers and 236 

environmentalists in defining specific regulations for the operation of block chain and crypto 237 

currencies by providing comparative findings on crypto energy algorithms and other energy-238 

efficient alternatives to ensure that effective energy and environmental conservation in block 239 

chain technologies can be achieved throughout their lifecycle. 240 

3. Data and Methodology 241 

This study has attempted to find out the impact of blockchain technology and green 242 

investment on the global environment in terms of estimating the impact of crypto currencies 243 

volume, crypto energy use, and biofuels(as clean energy) on global warming (CO2 emissions) 244 

by modeling with advanced techniques to analyze and understand the real scenario of 245 

blockchain versus green investment impact on the environment. 246 
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3.1. Data and Source 247 

This study has used time series data for analyzing proposed relationships among variables for 248 

the USA in monthly frequency, its time duration will be from 2011 to 2020 based on the data 249 

availability. The data for most of the variables are collected from the website investing.com 250 

except the bitcoin energy use, which is collected from Cambridge Bitcoin. The description of 251 

the variables and data sources is given in Table 1. 252 

Table 1. Time Series Variables and Their Descriptions 253 

Variables Abbreviation Frequency Data Source Unit  

CO2 emission CO2_emi Monthly investing.com Million Metric 

Tons of Carbon 

Dioxide 
Bitcoin volume in USD BITCOIN_V Monthly  investing.com USD 

Bitcoin market price BITCOIN_MP Monthly investing.com USD 

Bitcoin energy use BITCOIN_MP Monthly Cambridge Bitcoin 

Electricity 

Consumption Index 

TWh 

Biofuel production BIOFUEL_P Monthly investing.com Trillion Btu 

Biofuel consumption BIOFUEL_C Monthly investing.com Trillion Btu 

Renewable energy 

consumption 

RENEWABLE_EC Monthly investing.com Trillion Btu 

Coal Consumption Coal_C Monthly investing.com Thousand Short 

Tons Waste energy consumption WEC Monthly investing.com Trillion Btu 

Source: Authors’ Own Compilation   254 

3.2. Basic Econometric Model 255 

The study investigates the connection between bitcoin and green investment in order to 256 

determine how crypto currencies affects the global environment. Crypto currencies are 257 

regarded as a desirable and innovative approach to facilitating transactions. It has acquired 258 

widespread appeal over time, with a significant application in crypto currencies observed 259 

mostly in developed nations. With this, the environmental effects of crypto currencies are 260 

visible over time, as the mining process requires a large amount of energy, causing 261 

environmental damage. Based on this context and the preceding research, notably the study 262 

by Panah et al. (2022), the econometric model of the study is as follows: 263 

𝐶𝑂2_𝑒𝑚𝑖𝑡 =  𝛽0 + 𝛽1𝐵𝐶𝑉𝑡 +  𝛽2𝐵𝐶𝐸𝑈𝑡 + 𝛽3𝐵𝐶𝑀𝑃𝑡 + 𝛽4𝐵𝑖𝑜𝐶𝑡 +  𝛽5𝑅𝐸𝐶𝑡 + 𝛽6𝐶𝑜𝑎𝑙𝐶𝑡264 

+ 𝜀𝑡 … … … 𝑒𝑞 (1) 265 

Where CO2_emi is the CO2 emission, BCV is the bitcoin volume, BCEU is the bitcoin 266 

energy use, BCMP is the bitcoin market price, BioC is the biofuel consumption, REC 267 

renewable energy consumption, and CoalC is the coal consumption. β0 is the intercept term 268 

measuring the impact of all other variables which are not included in the model in other 269 

words it shows the level of carbon emissions in the USA economy when BCV, BCEU, 270 
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BCMP, BioC, REC, and CoalC are zero. The remaining coefficients are showing the impact 271 

of the associated variable on the carbon emission of the country. εt Is the error term while t in 272 

the subscript is showing the time period from 2011 to 2020. 273 

3.3.Methods 274 

Stationary checking is an important step in the time series data. Because a culmination of unit 275 

root, model misspecification, biased coefficients, and bogus estimation assumptions leads to 276 

unreliable results (Afandi, 2005; Campbell & Perron, 1991). The augmented Dickey-Fuller 277 

(ADF) test is utilized in this study to examine the stationary nature of variables used in the 278 

model. ADF is a common order of integration test that has three features: no intercept and 279 

trend, intercept and constant, and trend. The appropriate method is to use ARDL based on the 280 

varied order of integration of the variables. However, the study employs NARDL, an 281 

advanced econometric approach that takes into account the non-linearity of the data to 282 

investigate the asymmetric relationship between the variables of interest. Prior to this, the 283 

study used the Jarque-Bera test to assess the linearity of the data. If it is not near zero, it 284 

implies that the sample data does not have a normal distribution and is always positive. Then, 285 

the non-linearity test of rolling correlation plots, percentage change plots, and the BDS test 286 

are used to explore the non-linearity of the variables. 287 

After confirming the non-linear relationship the NARDL bound test is applied for detecting 288 

the long relationship among the variables under consideration. This technique is better than 289 

traditional as it provides reliable findings and best fits in the presence of nonlinearity. The 290 

test is suggested by (Pesaran et al., 1999). The test hypothesis is, Ho: The coefficients of the 291 

long-run equations are all insignificant. If the F-statistics of the bound test is greater than the 292 

upper bound, the existence of long-term associations will be proven. After the long-run 293 

associations have been established, in the next step the asymmetric ARDL model together 294 

containing the long-run and constrained ECM is employed. 295 

The NARDL model is one of the most common and well-established methods for analyzing 296 

the non-linear interactions among different time series variables. Because NARDL is the 297 

most straightforward technique for simulating both short-run and long-run non-linearities, it 298 

has a variety of advantages. If a time series vector is stationary, non-stationary, or both, it can 299 

be utilized to determine this. Bound testing is the method applied in this case to estimate the 300 

incidence of cointegrating relationships. Majeed et al. (2020) used the NARDL technique in 301 
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their experiments to investigate the positive shocks and negative shock components 302 

independently. Equation 1 is written in the NARDL framework in the following manner: 303 

Carbonemissiont304 

= γo + γ1Carbonemissiont +  γ2
+bitcoinvolumet

+ + γ3
−bitcoinvolumet

−305 

+ γ4
+bitcoinenergyuset

+ + γ5
−bitcoinenergyuset

− + γ6bitcoinmarketpricet306 

+ γ7biofuelproductiont+ γ8biofuelconsumptiont307 

+ γ9renewableenergyconsumptiont + γ10CoalConsumptiont308 

+ γ11wast energy consumptiont +  εt … … … eq (2) 309 

For bitcoin volume and bitcoin energy use two distinct components, comprising positive and 310 

negative shocks, are introduced. 's stand for parameters. The long-run parameter vectors are 311 

shown here as 𝐵𝐶𝑉𝑡 = 𝐵𝐶𝑉𝑜 +𝐵𝐶𝑉𝑡
+ + 𝐵𝐶𝑉𝑡

−. 𝐵𝐶𝑉𝑡
+ and 𝐵𝐶𝑉𝑡

− display the partial total of 312 

positive and negative shocks to the bitcoin volume. 313 

𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑡
+ = ∑  ∆

𝑛

𝑖=1

𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑖
+ = ∑

𝑛

𝑖=1

𝑚𝑎𝑥𝑖𝑚𝑢𝑚(∆𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑖 , 0) , 𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑡
−314 

= ∑  ∆

𝑛

𝑖=1

𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑖
− = ∑

𝑛

𝑖=1

𝑚𝑖𝑛𝑖𝑚𝑢𝑚(∆𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑖 , 0) … … 𝑒𝑞 (3) 315 

This study adopted NARDL following Shin:     316 
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∆𝑐𝑎𝑟𝑏𝑜𝑛𝑒𝑚𝑖𝑡317 

= 𝛾𝑜318 

+ 𝛾1𝑐𝑎𝑟𝑏𝑜𝑛𝑒𝑚𝑖𝑡−1+𝛾2
+𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑡−1

+ +𝛾3
−𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑡−1

− +𝛾4
+bitcoin_EU+𝛾5

−𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝐸𝑈𝑡−1
−319 

+  𝛾6𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑀𝑃t−1+ 𝛾7𝑏𝑖𝑜𝑓𝑢𝑒𝑙_𝑃t−1 + 𝛾8𝑏𝑖𝑜𝑓𝑢𝑒𝑙_𝐶𝑡−1 +  𝛾9𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙_𝐸𝐶𝑡−1320 

+ 𝛾10𝐶𝑜𝑎𝑙_𝐶𝑡−1 + 𝛾11𝑤𝑎𝑠𝑡𝑒_𝐸𝐶𝑡−1 + ∑ 𝛾𝑖∆𝑐𝑎𝑟𝑏𝑜𝑛𝑒𝑚𝑖𝑡−𝑖

𝑝

𝑖=1

+ ∑( 𝛾𝑖
+ ∆𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑡−𝑖

+

𝑝

𝑖=0

321 

+  𝛾𝑖
− ∆𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑉𝑡−𝑖

−  ) + ∑( 𝛾i
+ ∆bitcoin_EUt−i

+

p

i=0

+  𝛾i
− ∆bitcoin_EUt−i

−  )322 

+ ∑ 𝛾i∆𝑏𝑖𝑡𝑐𝑜𝑖𝑛_𝑀𝑃

p

i=0

+ ∑ 𝛾i∆biofuel_Pt−i

p

i=0

323 

+ ∑ 𝛾i∆biofuel_Ct−i + ∑ 𝛾∆renewable_ECt−i

p

i=0

p

i=0

+ ∑ 𝛾i∆Coal_Ct−i

p

i=0

+ ∑ 𝛾i∆waste_ECt−i

p

i=0

324 

+ εt … … eq (4) 325 

Where p is lag orders, 𝛾o = is the intercept. ∑ γi
+ ∆bitcoin_Vt−i

+p
i=0 = short-run impact of a 326 

rise in bitcoin volume on carbon, ∑ γi
+p

i=0 bitcoin_Vt−i
− = short-run effect of the fall in bitcoin 327 

volume on the emission of USA. 328 

This study employed three tests for determining whether certain variables are nonlinear: 329 

percentage change plots over time, rolling correlation plots, and the BDS test. However, the 330 

normality will first be established by determining the descriptive statistics. After that, 331 

stationarity will be ensured using the ADF test. Making ensuring there are no I (2) series is 332 

crucial. Thirdly, since each of our variables is a mixture of I(1) and I, we observe a 333 

cointegrating relationship between them (0). The fourth step employs the NARDL 334 

methodology. The null hypothesis will be investigated using the Wald test. 335 

 Null Hypothesis: γ1 = γ2
+ = γ3

− = γ4
+ = γ5

− = γ6 = γ7 = γ8 = γ9 = γ10 = γ11 = 0 336 

Alternative Hypothesis: γ1 ≠ γ2
+ ≠ γ3

− ≠ γ4
+ ≠ γ5

− ≠ γ6 ≠ γ7 ≠ γ8 ≠ γ9 ≠ γ10 ≠ γ11 ≠ 0 337 

Finally, it will be assessed whether there are short- and long-term nonlinear impacts of 338 

bitcoin V and bitcoin EU on carbon emissions. The unequal cumulative multiplier at 1 % 339 

disparity in bitcoin_Vt−i
+ and bitcoin_Vt−i

−  is written as:  340 
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θx
+ = ∑

ωcarbonemit+i

ωcarbonemit−1
+

x

i=0

, θx
− = ∑

ωcarbonemit+i

ωcarbonemit−1
−

x

i=0

, x = 1,2,3 … … eq (5) 341 

Where x →∞,θx
+→γ1

+,&θx
−→γ2

−, the same steps will be followed for the other variables. 342 

After this, analytical tests such as CUSUM plots, serial correlation tests, Heterosckedasticity 343 

tests, and dynamic multiplier plots to analyze the estimated NARDL model. For monitoring 344 

change detection, the CUSUM is frequently utilized. Later after a few years, Wald's SPRT 345 

approach was made public, and CUSUM was published in Biometrical in 1954. The NARDL 346 

model's stability is established by employing the CUSUM and CUSUM squared tests.  347 

4. Results and Discussion 348 

Simulating the impact of bitcoin volume, bitcoin energy use, bitcoin price, total biofuel 349 

production, biofuel consumption, renewable energy consumption, coal consumption, and 350 

waste energy consumption on the USA's carbon emissions, this study seeks to analyze the 351 

effects of block chain technology and crypto currencies mining on the environment of the 352 

country. Several advanced econometric techniques have been employed for analyzing and 353 

comprehending the real-world effects of bitcoin, blockchain technology use, and green 354 

investment. 355 

a. ADF Test Results 356 

Identifying whether the unit root process is present or not is the very first step in estimations. 357 

In this stage, the integration order of the variables must be decided. After the data series has 358 

been transformed into a log form, the ADF test is utilized. The findings demonstrate that the 359 

study's data series is a combination of I (1) and I (0). Table 2 displays the test results. 360 

Table 2. ADF Critical Values 361 

Scenarios  Critical values Level of significance 

With constant and trend(C,T) -3.445 5% 

With Intercept ( C)  -2.883 5% 

None -1.943 5% 

Source: Authors’ Own Computation   362 

Table 3 is explaining the ADF test results. 363 

Table 3. Augmented Dicky Fuller (ADF) test 364 
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Variables C,T Lag t-stat P Variables Lags t-stat P C, T 

CO2_emi C, T 4 -3.411 0.054 ∆CO2_emi 3 -13.635 0 None 

BITCOIN_V C, T 0 -6.128 0      

BITCOIN_MP None 2 0.529 0.829 ∆BITCOIN_MP 1 -9.334 0 None 

BITCOIN_MP C,T 0 -1.998 0.596 ∆BITCOIN_MP 0 -9.895 0 None 

BIOFUEL_P C, T 0 -5.723 0      

BIOFUEL_C C, T 4 -2.082 0.55 ∆BIOFUEL_C 3 -11.079 0 None 

RENEWABLE_EC C, T 5 -6.736 0      

Coal_C C, T 1 -9.09 0      

WEC C, T 3 -2.569 0.295 ∆WEC 3 -9.464 0 None 

Source: Authors’ Own Computation   365 

According to the results, BITCOIN_V, BIOFUEL_P, RENEWABLE_EC, and Coal_C are 366 

I(0) at the 0.05 level of significance, while the other variables are I (1). In this scenario, the 367 

Schwarz Information Criteria offers suggestions for choosing the delays. The study then 368 

focused on estimating the initial model to derive the key conclusions. The ARDL model is 369 

the best fit but additional tests, including the Jarque-Bera test and descriptive statistics, are 370 

required before using the ARDL model to ensure that our data is normally distributed. The 371 

BDS test, percentage change plots, and rolling correlation graphs are then used to determine 372 

linearity. 373 

b. Explanatory Summary 374 

The test statistics for the Jarque Bera, skewness, and Kurtosis tests, as well as the summary 375 

statistics, are explained in Table 4.According to the results on average the emission in the 376 

USA economy is about 431.3 and reached a maximum of about 532.8 and a minimum of 377 

about 426.8. Similarly, the statistics for all other variables are given. The skewness, kurtosis, 378 

and JB test are explaining that the time series is normally distributed. 379 

Table 4. Descriptive Statistics  380 

  CO2_emi BCV BCP BMP BFC BFP Coal_C REC WEC 

 Mean 431.3407 8933909. 7753.419 2.429 185.19 185.86 62487.25 875.146 39.767 

 Median 426.8735 2130000. 720.6000 0.520 184.76 187.84 63038.84 869.941 39.979 

 Maximum 532.8910 1.54E+08 61309.60 10.56 208.33 223.97 99618.15 1106.24 46.745 

 Minimum 304.9500 85750.00 0.500000 0.000 161.30 120.62 26754.13 650.345 33.389 

 Std. Dev. 37.45292 19582366 14213.47 3.064 10.531 19.211 16140.02 104.776 3.0318 

 Skewness -1.22E-01 4.407167 2.368600 1.1409 0.0942 
-5.18 

E-01 
0.008161 0.13239 

-5.16E-

02 

 Kurtosis 3.895504 27.26706 7.660111 3.1322 2.5102 2.9979 2.247127 2.25368 2.1434 

 Jarque-Bera 4.810879 3721.752 246.5471 29.17 1.5375 5.9883 3.166217 3.50132 4.1553 
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 Probability 0.090226 0.000000 0.000000 0.000 0.4635 0.0500 0.205336 0.17365 0.1252 

 Sum 57799.66 1.20E+09 1038958. 325.53 24815.72 24905.62 8373292. 117269.6 
532 

8.847 

 Sum Sq. 

Dev. 
186562.0 5.10E+16 2.69E+10 1248.73 14752.27 49085.45 3.46E+10 1460082. 

122 

2.582 

 Observations 134 134 134 134 134 134 134 134 134 

Source: Authors’ Own Computation   381 

 382 

c. Linearity Test 383 

Linearity test includes percentage change plots, rolling correlation plots, and BDS test stats. 384 

Which are the following: 385 

i. Percentage Change Plots 386 

Figure 1 is showing the nonlinear behavior of the time series, for further confirmation, we 387 

will move to a rolling correlation plot. Because the rate of percentage change between 388 

dependent and independent variables in the boom and recession phases is not similar, it is 389 

evident from these graphs that there are non-linear interactions. 390 

Fossil fuels consumption Geo biomass consumption 

  

Renewable energy consumption GDP per capita growth 
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Figure 1 is showing the percentage change plots for all the time series in our study. 391 
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(Source: Authors’ Own Computation) 392 

ii. Rolling correlation plots 393 

The figures below demonstrate how a relationship's character develops over time. It indicates 394 

that some nonlinearity is present as up and down fluctuations are observed. Hence, it can be 395 

said the variable under consideration has the characteristics of non-linearity and therefore 396 

required a NARDL framework for further estimation. 397 
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Figure 2. Rolling Correlation Plots(Source: Authors’ Own Computation) 398 

iii. BDS Examination 399 

The BDS test was developed to determine whether the nonlinear dependency is likely to exist 400 

or not. The null hypothesis states that the distribution of the data in a time series is random, 401 

equal, independent, and uniform (iid).According to the test statistics (in Table 5), the linearity 402 

null hypothesis cannot be accepted in this case for all degrees of embedding dimension. The 403 

findings demonstrate that all of the data series exhibit nonlinear dependence. 404 

Table 5. Results of the BDS Test 405 
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BDS Test for CO2_EI 

Dimension 

BDS 

Statistic Std. Error z-Statistic Prob. 

 2  0.019399  0.002443  7.941955  0.0000 

 3  0.022260  0.001630  13.65863  0.0000 

 4  0.018136  0.000816  22.22888  0.0000 

 5  0.011599  0.000358  32.42175  0.0000 

 6  0.008161  0.000145  56.19952  0.0000 
 

BDS Test for BITCOIN_V 

Dimension 

BDS 

Statistic Std. Error z-Statistic Prob. 

 2  0.183825  0.014073  13.06258  0.0000 

 3  0.315427  0.021915  14.39349  0.0000 

 4  0.400683  0.025609  15.64606  0.0000 

 5  0.454708  0.026215  17.34541  0.0000 

 6  0.486269  0.024844  19.57284  0.0000 
 

BDS Test for BCP 

 
Dimension BDS 

Statistic 

Std. Error z-Statistic Prob. 

2  0.186211  0.011738  15.86398  0.0000 

 3  0.299505  0.015616  19.17917  0.0000 

 4  0.361092  0.015598  23.15038  0.0000 

 5  0.391360  0.013650  28.67015  0.0000 

 6  0.403510  0.011062  36.47584  0.0000 
 

BDS Test for BITCOIN_MP 

Dimension BDS 

Statistic 

Std. Error z-Statistic Prob. 

 2  0.223598  0.008787  25.44584  0.0000 

 3  0.314508  0.008788  35.78723  0.0000 

 4  0.350019  0.006607  52.97761  0.0000 

 5  0.361658  0.004355  83.03578  0.0000 

 6  0.363130  0.002661  136.4882  0.0000 
 

BDS Test for BIOFUEL_C 

Dimension BDS 

Statistic 

Std. Error z-Statistic Prob. 

 2  0.011599  0.001551  7.479861  0.0000 

 3  0.013511  0.000946  14.28509  0.0000 

 4  0.010316  0.000433  23.85026  0.0000 

 5  0.008228  0.000173  47.50937  0.0000 

 6  0.005663  6.42E-05  88.22898  0.0000 
 

BDS Test for BIOFUEL_P 

Dimension BDS 

Statistic 

Std. Error z-Statistic Prob. 

 2  0.044898  0.001360  33.00594  0.0000 

 3  0.045088  0.000853  52.83557  0.0000 

 4  0.030409  0.000401  75.78539  0.0000 

 5  0.017909  0.000165  108.4306  0.0000 

 6  0.010910  6.29E-05  173.4117  0.0000 
 

BDS Test for COAL_C 

Dimension BDS 

Statistic 

Std. Error z-Statistic Prob. 

 2  0.056919  0.001143  49.78301  0.0000 

 3  0.043553  0.000694  62.75534  0.0000 

 4  0.024763  0.000316  78.43972  0.0000 

 5  0.015608  0.000126  124.1629  0.0000 

 6  0.010291  4.63E-05  222.2047  0.0000 
 

BDS Test for RENEWABLE_EC 

Dimension BDS 

Statistic 

Std. Error z-Statistic Prob. 

 2  0.059283  0.001201  49.38120  0.0000 

 3  0.045053  0.000716  62.89920  0.0000 

 4  0.027742  0.000320  86.61315  0.0000 

 5  0.014608  0.000125  116.5127  0.0000 

 6  0.008709  4.54E-05  191.7712  0.0000 
 

BDS Test for WEC 

Dimension BDS Statistic Std. Error z-Statistic Prob. 

 2  0.028185  0.001027  27.44350  0.0000 

 3  0.023235  0.000627  37.06362  0.0000 
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 4  0.014616  0.000287  50.97777  0.0000 

 5  0.008385  0.000115  73.05322  0.0000 

 6  0.004460  4.25E-05  104.9000  0.0000 
 

Source: Authors’ Own Computation   406 

d. NARDL Approach 407 

Based on all the tests and analysis, it is determined that the non-linear ARDL model is the 408 

best model for this time series analysis in both the long run and the short run. Here, in order 409 

to ascertain whether cointegrating linkages were present, we will estimate our results utilizing 410 

NARDL and NARDL bound tests. 411 

Initially lag length is selected using the AIC method and then NARDL bound test is applied 412 

to explore the long-run relationship among the variables. The results are shown in Table 6. 413 

According to the study's findings, F statistics is more significant than the upper bound value 414 

at a 5% level of significance. Therefore, the null hypothesis is rejected. As can be observed in 415 

the table below, cointegration among the variables means that cointegration NARDL 416 

modeling is required. 417 

Table 6. NARDL Bound Test 418 

Bounds F-test (wald) for no cointegration 

 Test, (K) Estimate Lower bound I(0) Upper bound I(1) 

F-stat, (10) 6.191 1.98 3.04 

                              Alternative hypothesis: Possible cointegration 

Source: Authors’ Own Computation   419 

The results of NARDL long-run and short-run estimates are provided in table 7. In the long 420 

run, CO2 emissions increased for the USA due to an increase in crypto currencies (bitcoin) 421 

volume, both positive and negative, crypto currencies (bitcoin) prices. This is because 422 

extensive use of bitcoin consumes a lot of energy and therefore increase emission into the 423 

atmosphere. This implies that bitcoin is not promoting green growth in the USA. This finding 424 

is in line with Mora et al. (2018) and Panah et al. (2022). Further, the impact of coal 425 

consumption is positive as coal is among the major fossil fuels that are harmful to the global 426 

environment. Here the results show that a 1% increase in coal leads to a 0.114 % increase in 427 

carbon emissions. These findings are in line with Pata (2018). Renewable is an 428 

environmentally friendly energy source and it greatly helps to reduce pollutants. According to 429 

the present findings with a 1 % increase in renewable energy consumption, carbon emission 430 
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reduces by 0.362%. Wind energy is also clean and its 1 % increase is associated with a 0.077 431 

% reduction in carbon emissions. These findings are supported by Bilgili et al. (2016) and 432 

Charfeddine and Kahia (2019).  433 

The results for the short run are also shown in Table 7. The findings are diverse. In the 434 

findings, the large carbon emission carries a positive sign showing that a 1 % increase in 435 

carbon emissions is a previous increase in the CO2 emission presently by 0.44 %. Likewise, 436 

the third lag of bitcoin is positive and significant implying that a stable increase in prices of 437 

bitcoin increases the use of bitcoin and energy use thereby increasing the carbon emissions. 438 

Similar results are seen for bitcoin volume. The impact of biofuel and its lags are positively 439 

significant along with renewable energy effects and wind energy effects. This is because of 440 

the overtime increases in the significance of these resources in economic activities. The 441 

estimated ECT is also negative, demonstrating that a shock to the USA's CO2 emissions that 442 

occurs in one period as a result of crypto currencies and other independent variables of our 443 

model can be recovered by changes to the independent variables of our analysis by 46.3 444 

percent in the following period. 445 

Table 7. Long Run and ECM Part of the NARDL 446 

ARDL Long Run Form and Bounds Test 

Dependent Variable: D(LCO2_EI) 

Selected Model: ARDL(2, 4, 1, 0, 3, 0, 0, 4, 3, 4, 4) 

Conditional Error Correction Regression 

Variable Coefficient Std. Error t-Statistic Prob.    

C 1.946154*** 0.648596 3.000566 0.0035 

LCO2_EI(-1)* -0.463902*** 0.071946 -6.447877 0.0000 

BITCOIN_MP_POS(-1) -9.40E-05 0.003415 -0.027514 0.9781 

BITCOIN_MP_NEG(-1) -0.004929 0.004750 -1.037480 0.3022 

LBITCOIN_V_POS** 0.004995** 0.002459 2.031534 0.0451 

LBITCOIN_V_NEG(-1) 0.006072** 0.002771 2.190934 0.0310 

LBCP** 0.006303* 0.003217 1.959378 0.0531 

LBIOFUEL_C** -0.126056* 0.070114 1.797870 0.0754 

LBIOFUEL_P(-1) -0.312353*** 0.053954 5.789207 0.0000 

LCOAL_C(-1) 0.114639*** 0.036937 3.103653 0.0025 

LRENEWABLE_EC(-1) -0.362215*** 0.077572 -4.669422 0.0000 

LWEC(-1) -0.077359 0.082962 -0.932457 0.3535 

ARDL Error Correction Regression  

D(LCO2_EI(-1)) 0.449344*** 0.065896 6.818986 0.0000 

D(BITCOIN_MP_POS) -0.011019 0.006893 -1.598474 0.1133 

D(BITCOIN_MP_POS(-1)) -0.008005 0.006439 -1.243317 0.2169 

D(BITCOIN_MP_POS(-2)) -0.002935 0.006554 -0.447852 0.6553 

D(BITCOIN_MP_POS(-3)) 0.022878*** 0.006531 3.503070 0.0007 

D(BITCOIN_MP_NEG) 0.011029* 0.005880 1.875611 0.0638 

D(LBITCOIN_V_NEG) 0.007187* 0.003898 1.843984 0.0684 

D(LBITCOIN_V_NEG(-1)) 0.004733 0.003982 1.188494 0.2377 

D(LBITCOIN_V_NEG(-2)) -0.008925** 0.004021 -2.219513 0.0289 

D(LBIOFUEL_P) 0.228460*** 0.034919 6.542617 0.0000 

D(LBIOFUEL_P(-1)) -0.219945*** 0.044395 -4.954325 0.0000 
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D(LBIOFUEL_P(-2)) -0.119294*** 0.041447 -2.878254 0.0050 

D(LBIOFUEL_P(-3)) -0.103828*** 0.038602 -2.689681 0.0085 

D(LCOAL_C) 0.395196*** 0.019208 20.57414 0.0000 

D(LCOAL_C(-1)) -0.163372*** 0.033544 -4.870396 0.0000 

D(LCOAL_C(-2)) 0.095303*** 0.018086 5.269501 0.0000 

D(LRENEWABLE_EC) 0.077881 0.048400 1.609120 0.1110 

D(LRENEWABLE_EC(-1)) 0.316690*** 0.061553 5.145033 0.0000 

D(LRENEWABLE_EC(-2)) 0.193487*** 0.061535 3.144366 0.0022 

D(LRENEWABLE_EC(-3)) 0.204884*** 0.061544 3.329087 0.0012 

D(LWEC) 0.254858*** 0.057150 4.459498 0.0000 

D(LWEC(-1)) 0.041164 0.065877 0.624856 0.5336 

D(LWEC(-2)) 0.157047*** 0.059401 2.643850 0.0096 

D(LWEC(-3)) 0.113740** 0.054171 2.099664 0.0385 

CointEq(-1)* -0.463902 0.050894 -9.115024 0.0000 

Source: Authors’ Own Computation   447 

e. Analytical Test 448 

CO2 is mostly produced by burning fossil fuels. Contrary to fossil fuels, using geo biomass, 449 

and renewable energy as a fuel is additionally benign to the environment. After providing an 450 

explanation for both the short and long-term outcomes, we looked at serial correlation, the 451 

Heterosckedasticity test, cumulative sum, and CUSUM graphs to look at the stability of error 452 

terms. The findings are as follows: 453 

i. Serial correlation and Heterosckedasticity Test 454 

The results of the Breusch-Godfrey serial correlation LM test and Heterosckedasticity test 455 

Breusch-Pagan-Godfrey are presented in table 8. The test's F-statistics values are 456 

insignificant verifying that autocorrelation and Heterosckedasticity problems exist in the data. 457 

Table 8. Diagnostic Test  458 

Breusch-Godfrey Serial Correlation LM Test: 

 

 

F-statistic 1.948222     Prob. F(4,89) 0.1094 

Obs*R-squared 10.38592     Prob. Chi-Square(4) 0.0344 

Heterosckedasticity Test: Breusch-Pagan-Godfrey 

F-statistic 0.740740     Prob. F(35,93) 0.8409 

Obs*R-squared 28.12205     Prob. Chi-Square(35) 0.7887 

Scaled explained SS 11.41860     Prob. Chi-Square(35) 0.9999 

Source: Authors’ Own Computation   459 

ii. CUSUM Plots 460 

CUSUM plots are used to test the stability of the NARDL model in this study analysis. The 461 

results are shown in Figure 3 demonstrating the stability of the model. The confidence 462 

Jo
urn

al 
Pre-

pro
of



23 
 

interval's bottom and upper limits indicated the mean and variance of the error term. Our 463 

results indicate that the estimates are constant in both long and short terms thereby accepting 464 

the null hypothesis. 465 

The usage of renewable energy, the consumption and production of biofuels, waste energy, 466 

coal, and bitcoin volume, price, and energy use all have non-linear correlations with CO2 467 

emissions. Further, the non-linear correlation is proved between the variables thereby 468 

providing reliable estimates. The ECM demonstrates how by making changes to these 469 

sectors, we may gradually recover from shocks in the USA's CO2 emissions. 470 
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Figure 3. CUSUM Plots(Source: Authors’ Own Computation) 471 

iii. Dynamic Multiplier Plots 472 

Dynamic multiplier graphs of NARDL check nonlinearity in the model. This graph tells the 473 

response of variable's pattern to its new long-run equilibrium owing to the unitary shocks in 474 

the regressors.The results are in Figure 4.The black nonstop line in the dynamicmultiplier 475 

charts represents the change in carbon emissions for the USA due to a positive shock to 476 

bitcoin volume and energy use. The black dotted line depicts a change in the emissions owing 477 

to a decline in bitcoin volume and energy consumption. The asymmetry plot is demonstrated 478 

by the three red dotted lines. Similarly, the 95 percent confidence interval is depicted through 479 

the sided red dotted line. 480 
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The relationship between the amount of bitcoin transactions and energy use demonstrates that 481 

positive shocks have a favorable impact on US carbon emissions, but negative shocks have 482 

the opposite effect. Short-term magnitude differences between positive and negative reactions 483 

are substantial, whereas long-term differences are quite marginal. In the short run, we can say 484 

that there is a sizable nonlinear relationship. The blatant mismatch between all plot variables 485 

is depicted by the line of asymmetry. Therefore, the short-term effects are enormously 486 

important. 487 

To conclude, in the modern world, ecological devastation and climate change are major 488 

problems. As a result, nations all around the world are making great efforts to manage global 489 

warming and climate change. Blockchain technologies, crypto currencies mining, and green 490 

investments all play significant roles in this. This study looked into the effect of crypto 491 

currencies on the USA's CO2 emissions and the best energy source for mining crypto 492 

currencies to minimize their carbon footprints.  493 

With respect to methodology, the study results show that nonlinear, long-run, and short-run 494 

relationships exist between crypto currencies and CO2 emissions. Results indicate that an 495 

increase in bitcoin volume, bitcoin energy use, and Coal consumption led to an increase in 496 

the emissions in the long run and short run, this may occur due to the heavy use of coal, and 497 

oil as fuel in crypto currencies mining. In conclusion, the block chain technology used in 498 

crypto currencies and energy used in crypto currencies mining caused to increase in CO2 499 

emissions in the USA and it is needed to convert from high carbon energy to low carbon 500 

energy such as biofuel consumption to save the environment of the USA as well as the global 501 

environment. To meet this goal, it is needed to do green investments such as investments in 502 

low carbon energy production for example biofuel production. As a result, the green 503 

investment will lead to saving the environment of the USA as well as theglobal 504 

environment.Overall, the results are showing a nonlinear relationship among variables and 505 

show that green investment will lead to saving the environment of the USA as well as the 506 

global environment. 507 

Jo
urn

al 
Pre-

pro
of



25 
 

-.020

-.015

-.010

-.005

.000

.005

.010

.015

1 3 5 7 9 11 13 15

Multiplier for LBCV(+)

Multiplier for LBCV(-)

Asymmetry Plot (with C.I.)

 

-.06

-.04

-.02

.00

.02

.04

.06

.08

1 3 5 7 9 11 13 15

Multiplier for BCEU(+)

Multiplier for BCEU(-)

Asymmetry Plot (with C.I.)

 

Figure 4. Dynamic Multiplier Graphs for NARDL (Source: Authors’ Own Computation) 508 

5. Conclusion and Policy Recommendations  509 

This study investigates the association between crypto currencies, biofuel consumption, and 510 

CO2emissions in the USA using monthly data. The study has employed non-linear ARDL and 511 

other preliminary methods over the data of the USA economy. The graphical analysis found 512 

that there exists an asymmetric relationship among the selected dependent and independent 513 

variables of the study. The results of the unit root analysis haveshown that the observed 514 

variables are mixed (integrated of order 0 and 1) integrated. Furthermore, the findings of 515 

Wavelet Coherence suggest that bitcoin, biofuel consumption, and other concerned control 516 

variables have a strong correlation with CO2 emissions in the USA.The long run and ECM of 517 

NARDL confirm that carbon emissions in the USA economy increase as a result of both 518 

positive and negative shocks in crypto currencies volume. On contrary, a rise in biofuel 519 

consumption reduces the emissions in the atmosphere. FurtherCUSUM plotsindicate that the 520 

mean and variance of error terms are witnessed between the lower and upper limit of the 521 

confidence interval and inside lower and upper critical limits thereby indicating the stability 522 

of the estimates. Dynamic multiplier graphs of the ARDL model also confirm the strong non-523 

linear relationship among variables in the long run.  524 

Based on the findings, this study concludes that crypto currencies trading in the USA leads to 525 

high CO2 emissions in the country. Therefore, our study recommends controlling crypto 526 
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currencies volume or making it environment-friendly by adopting renewable energy sources 527 

forits mining process. Our study also suggests taking into account the non-linearity among 528 

carbon emissions and crypto currencies so that realistic environmental protection policies can 529 

be made and successfully implemented. Overall, the study is limited to only US and provide 530 

important implications regarding bitcoin price, volume, and carbon emissionsFuture study 531 

can capture the influence of bitcoin's impact on other environmental variables to further aid 532 

authorities in determining which areas require further regulation. In addition, a spatial 533 

analysis of USA states can be performed. 534 
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